
Examining Geospatial Covariate Relationships with Civilian 
Killings in South Sudan’s Civil War

Introduction and Objective:

From Dec. 2013 - Feb. 2020, South Sudan 
experienced a civil war involving frequent 
targeting of civilians. A study by the London 
School of Hygiene & Tropical Medicine 
suggests as many as 400,000 civilians were 
killed. With the goal of identifying attributes to 
be used in machine learning models of mass 
killings in conflict-prone countries, I use the 
South Sudan case study to identify potential 
causal variables while accounting for spatial 
autocorrelation. 

Theoretical Background & 
Methods:

Scholars posit various factors contribute to 
violence against civilians in conflict, including: 
ethnic groups’ exclusion from state power, 
civilians living in regions along state borders 
where authorities lack presence, populations 
living far from capitals, mountainous terrain 
enabling rebels to hide and launch attacks 
(Collier and Hoeffler, 2004), droughts – which 
incentivize people to join rebel groups for 
income (Miguel et al., 2004), and combatants 
seizing territory where occupants are deemed 
loyal to the enemy (Straus, 2015). Perkoski 
and Chenoworth (2018) claim riots increase 
chances authorities will use violent repression. 
Other predictors include armed clashes 
between opponents, explosions and remote 
violence, and abductions.

From the ACLED dataset, violence against 
civilian events (green dots on the maps) and 
fatalities from such events (shades of red) are 
used as my dependent variables. Explanatory 
variables from ACLED include riots, territorial 
seizures, armed clashes, explosions and 
remote violence, and abductions. From the 
Prio-GRID dataset, distance from the capital, 
distance to the closest border, total rainfall, 
mountain terrain levels, and ethnic groups 
excluded from political power per cell grid 
(2012-13 only) were measured.  

Steps:
1) Compare raster maps of civilian killings from 
2012-2013 and 2014-2015 in terms of first 
order visual inspection, and 2) maps of high 
and low clusters and global Moran’s I statistics 
to verify the need for second order analysis via 
zonal statistics. 3) Compare Lagrange 
multiplier diagnostics for spatial dependence to 
conclude which regressions are necessary. 
Examine and compare the results.

Step 1:

Step 2:

Step 3:

Spatial Dependence Diagnostics:
2012-2013

Test MI/DF Value Prob
Moran's I (error) 0.3074 24.2317 0.00000
LM (lag) 1 218.7997 0.00000
Robust LM (lag) 1 76.589 0.00000
LM (error) 1 252.2818 0.00000
Robust LM (error) 1 110.0712 0.00000
LM (SARMA) 2 328.8708 0.00000

2014-2015

Test MI/DF Value Prob
Moran's I (error) 0.1847 15.2872 0.00000
LM (lag) 1 101.1095 0.00000
Robust LM (lag) 1 25.8347 0.00000
LM (error) 1 91.1412 0.00000
Robust LM (error) 1 15.8665 0.00007
LM (SARMA) 2 116.976 0.00000

Note: 

A first order Queen’s contiguity matrix was 
found to have a higher Moran’s I value than a 
second order Queen’s for both 2012-13 and 
2013-14.  

Brief Analysis:
In Step 1 (2012-13), it appears civilian fatalities 
were not randomly distributed. A 
disproportionate number of deaths appear in 
eastern and northern South Sudan, whereas 
cold spots appear in central and in 
northwestern South Sudan.

The pattern changed from 2014-15, whereby 
now civilian fatalities were high in the north 
(except for pockets of cold spots) and low 
civilian fatalities appeared in the south. 

In Step 2, these patterns are largely confirmed. 
From 2012-13, a fairly strong Moran’s I of 0.688 
exists in which in the east, high local county 
civilian fatalities tend to exist alongside high 
levels of neighboring county fatalities. Likewise, 
in northwestern and central South Sudan, low 
local county civilian fatalities tend to coincide 
with low neighboring county fatalities. Similarly, 
the 2014-15 map shows High-Highs in the 
north, and Low-Lows in the south, confirming 
my first order analysis. 

The Moran’s I declines vis-à-vis 2012-13, but 
remains moderately strong at a statistically 
significant 0.415.

In Step 3, after running OLS models, both 
Moran’s I (error) diagnostics for 2012-13 and 
2014-15 show that model residuals are highly 
statistically significantly clustered in space. 
Further, in both cases, the LM lag and error 
diagnostics, and the Robust LM lag and error 
diagnostics are highly statistically significant. 
This indicates both spatial lag and error affect 
the OLS models. It is necessary to use a 
Spatial Durbin model, which controls for both 
spatial lag and spatial error clustering.

Spatial Durbin Results:
2012-2013

Column1 Estimate Pr(>|z|) Significant
(Intercept) 5.645 0.320
mountains -1.611 0.521
distance to border -0.021 0.003 ***
distance to capital -0.008 0.120
1 group excluded -0.035 0.966
2 groups excluded 0.436 0.702
3 groups excluded -1.29 0.538
rainfall amount -0.001 0.557
armed clashes 0.087 0.243
explosions/remote violence -0.374 0.007 ***
riots 0.249 0.718
territory seizures 2.743 0.001 ***
lag.mountains 8.049 0.374
lag.distance to border -0.022 0.192
lag.distance to capital 0.003 0.765
lag.1 group excluded -2.878 0.363
lag.2 groups excluded 12.801 0.126
lag.3 groups excluded -47.005 0.002
lag.rainfall amount 0.003 0.501
lag.armed clashes 0.027 0.925
lag.explosions/remote violence 0.329 0.493
lag.riots 2.086 0.483
lag.territory seizures -1.904 0.507

It is surprising that – once controlling for spatial 
lag and error – excluding groups from politics 
is not statistically significant. It is also 
surprising that distance to the capital is not 
significant. Yet, proximity to one’s state border 
is highly statistically significant. And territorial 
seizure is also statistically significant. I thus 
interpret the coefficient as follows: 

Each time a territory is seized by an armed 
group, there are – on average – 2.7 civilians
who are killed, controlling for the other 
variables in the model, as well as for the lag of 
the error term for these other independent 
variables, and the for the overall spatial lag 
parameter (ρ).

Further, ρ can be interpreted as: each 
additional civilian killed in neighboring counties 
in turn leads to about 0.89 civilians being killed 
in a given local county.

2014-2015:
Column1 Estimate Pr(>|z|) Significant
(Intercept) 4.788 0.058
mountains -0.124 0.869
distance to border 0.006 0.002 ***
distance to capital 0.003 0.031 **
rainfall amount 0.0004 0.541
armed clashes 0.003 0.787
explosions/remote violence 0.038 0.336
riots -0.321 0.0001 ***
territory seizures 0.076 0.198
lag.mountains -6.595 0.051
lag.distance to border -0.003 0.587
lag.distance to capital -0.004 0.031
lag.rainfall amount -0.003 0.093
lag.armed clashes -0.041 0.122
lag.explosions/remote violence -0.310 0.009
lag.riots 0.622 0.011
lag.territory seizures 0.565 0.005

It is notable that significant relationships 
between variables from 2012-2013 became 
insignificant from 2014-2015. This may result 
from the war’s smaller death tolls from 2014-
15 as seen in the raster layer legend.

Alternatively, it may well be that alternative 
fighting strategies were at play. This narrative 
could accompany the fact that the high-high 
and low-low clusters of violence against 
civilians switched dramatically in 2014 and 
2015 compared to the prior two years.

It is also notable that the only relationship 
which remains significant (distance to nearest 
border) switches signs in 2014-15. This 
finding also suggests that the changing 
dynamic nature of the war made civilians 
previously safe by being further from the 
border at increasing risk of being killed.

The fact that the war became less brutal than 
before can be seen in the value of ρ, which 
declined. Now, for each individual killed by a 
neighboring county, one can expect 0.649 
individuals killed in the local county. 

Conclusion: 
Since some predictor coefficients lost or 
gained statistical significance over time, it 
may be that there are conditional 
relationships at play not easily discernible. 
Further, all predictors should still be used in 
machine learning models. As Ward et al. 
(2010) explain, at times even variables with 
high p-values end up being good predictors, 
though not necessarily causal.

Rob Boswell


